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Abstract 15 

Reducing oil and gas methane emissions is crucially important for limiting the rate of human-induced climate 

warming. As the capacity of multi-scale measurements of global oil and gas methane emissions have advanced in 

recent years, including the emerging ecosystem of satellite and airborne remote sensing platforms, a clear need for an 

openly accessible and regularly updated global inventory of oil and gas infrastructure has emerged as an important 

tool for characterizing and tracking methane emission sources. In this study, we develop a spatially explicit database 20 

of global oil and gas infrastructure, focusing on the acquisition, curation, and integration of public-domain geospatial 

datasets reported by official government sources, industry, academic, and other non-government entities. We focus 

on the major oil and gas facility types that are key sources of measured methane emissions, including production 

wells, offshore production platforms, natural gas compressor stations, processing facilities, liquefied natural gas 

facilities, crude oil refineries, and pipelines. The first version of this global geospatial database (Oil and Gas 25 

Infrastructure Mapping database, OGIM_v1) contains a total of ~six million features, including 2.6 million point 

locations of major oil and gas facility types and over 2.6 million kilometers of pipelines globally. For each facility 

record, we include key attributes—such as facility type, operational status, oil and gas production and capacity 

information, operator names, and installation dates—which enable detailed methane source assessment and attribution 

analytics. Using the OGIM database, we demonstrate facility-level source attribution for multiple airborne remote 30 

sensing detected methane point sources from the Permian Basin, which is the largest oil producing basin in the U.S. 

In addition to source attribution, we present other major applications of this oil and gas infrastructure database in 

relation to methane emission assessment, including the development of an improved bottom-up methane emission 

inventory at high resolution (1 km x 1 km). We also discuss the tracking of changes in basin-level oil and gas activity, 

and the development of policy-relevant analytics and insights for targeted methane mitigation. This work and the 35 

OGIM database, which we anticipate updating on a regular cadence, helps fill a crucial oil and gas geospatial data 
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need, in support of the assessment, attribution, and mitigation of global oil and gas methane emissions at high 

resolution. OGIM_v1 is publicly available at https://doi.org/10.5281/zenodo.7466758. (Omara et al. 2022) 

 

1. Introduction 40 

Limiting human-induced global warming, in accord with the climate-neutrality goals of the Paris Agreement 

(UNFCCC, 2015), requires “strong, rapid, and sustained” (IPCC, 2021) reductions in emissions of methane—a potent, 

but short-lived climate pollutant responsible for at least a quarter of today’s gross climate warming (Myhre et al., 

2013; Ocko et al., 2018; Ocko et al. 2021). Globally, the oil and gas sector accounts for about one-quarter of total 

anthropogenic methane emissions of around 360 teragrams (Tg) in 2017 (Jackson et al. 2021). By 2030, an estimated 45 

50% of global oil and gas methane emissions have the potential for no-cost abatement relative to current emissions, 

because of the inherent commercial value of the recovered natural gas and widely available methane abatement 

technologies (Ocko et al. 2021). Recognizing the unique opportunity to slow the rate of near-term warming driven by 

avoidable methane emissions, a concerted effort toward fast, strategic action on emission reductions has emerged, 

with public commitments by oil and gas companies (OGCI, 2021) and pledges by countries (GMP, 2021) towards 50 

methane reduction targets and initiatives achievable within the decade.  

At the same time, recent technological advancements in oil and gas methane emission quantification, 

characterized by a growing suite of airborne and satellite remote sensing instruments, have paved the way for rapid, 

frequent, and high-resolution mapping of both high-emitting methane point sources and area sources on a global scale 

(Jacob et al. 2022). These advancements in methane satellite remote sensing allow for the assessment of the temporal 55 

evolution of oil and gas methane emissions at multiple spatial scales, and enable the tracking of progress toward global 

emission reductions against stated mitigation targets. However, it is very challenging for satellite/airborne remote 

sensing to resolve facility-level attributes (such as oil and gas facility type or throughput rates) of detected methane 

sources, which must be paired with geolocated methane source datasets in support of source attribution, which is 

crucial for methane emissions monitoring and mitigation. Furthermore, methane emission rate estimations based on 60 

Bayesian inversion of satellite observations require a comprehensive, spatially explicit inventory of methane emissions 

as a priori information (Jacob et al. 2016), which invariably comes from bottom-up methane emission inventories 

dependent on geolocated oil and gas activity data (Scarpelli et al., 2022). Such geolocated methane source datasets 

must be global in scope, contain relevant attributional information on key oil and gas infrastructure types—including 

exploration/production, processing, refining, storage, and transmission facilities—that are important methane sources 65 

(EPA 2022, Alvarez et al. 2018), and can be updated on a regular cadence to account for evolving oil and gas activity. 

The current dearth of an openly accessible, regularly updated, and global geospatial database of oil and gas 

infrastructure is a major limitation for methane source assessment and attribution of remotely-sensed emissions. There 

have been some useful efforts in the past to develop such a database. However, those were either limited in geographic 

scope, focused on one or a few oil and gas infrastructure types, or lacked granularity and regular updates (Carranza et 70 

al. 2018, Rafiq et al. 2020, Rose et al. 2018, GEO, 2018). In this study, we focus on the acquisition of public-domain 

location-specific datasets for all major oil and gas infrastructure types globally, including production wells, offshore 

platforms, natural gas compressor stations, processing facilities, liquefied natural gas (LNG) facilities, crude oil 
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refineries, and pipelines. The resultant geospatial database, which we refer to as the Oil and Gas Infrastructure 

Mapping (OGIM) database (Omara et al. 2022), contains both locational information and, where available, facility-75 

level attributes (e.g., facility type, operational status, and capacity or throughput) that is critical for methane source 

assessment and attribution. 

 

2. Methods 

2.1. Overview of global oil and gas infrastructure  80 

Global oil and gas infrastructure is diverse, complex, and vast. Across global oil and gas producing fields or 

basins, oil and gas infrastructure plays a critical role in the extraction of oil and gas resources from underground 

reservoirs, as well as in gathering, treatment, compression, processing, refining, storage, and transportation of raw and 

refined products (Devold, 2013).  

Oil and gas infrastructure in upstream operations enable the exploration, production, and gathering and 85 

treatment of oil and gas in both onshore and offshore locations. The major oil and gas facility types in upstream 

operations include (i) production wells, (ii) offshore platforms, and (iii) equipment or facilities that support oil and 

gas gathering, separation, metering, storage, and transportation. The latter may be collocated with well sites or operate 

as standalone facilities. Facilities in midstream operations allow for separation and treatment of raw natural gas to 

produce pipeline-quality dry natural gas and associated hydrocarbon products (Devold, 2013). These facilities 90 

typically include natural gas processing plants, natural gas compression facilities, LNG production (liquefaction) or 

regasification facilities, and gathering and transmission pipelines. The major facilities in downstream operations 

include crude oil refineries. Figure 1 shows examples of these major oil and gas facility types. 

 

2.2. Open oil and gas geospatial data acquisition, integration, and database creation 95 

We designed a three-step process for database development that involved acquisition of open geospatial data, 

data processing, and database analytics (Figure 2). We searched the web for open geospatial data on oil and gas 

infrastructure, focusing on major facility types that are relevant sources of measured methane emissions in upstream, 

midstream, and downstream operations, as described above. We used both semi-automated and manual web search 

approaches, acquiring and cataloguing open geospatial datasets retrieved from both official government and non-100 

government sources. Non-government data sources included open data from oil and gas company reports, non-profit 

research institutions, academic research works, and other open oil and gas data websites (Figure 2). Where necessary, 

we used automated website translation services (Google Translate) for non-English websites for which relevant open 

geospatial datasets on oil and gas infrastructure were available. In cataloguing acquired datasets, each unique data 

source was assigned a source reference ID, and metadata associated with the downloaded datasets were recorded in a 105 

dedicated data catalog spreadsheet, including the URL links, the original data owner names, data file formats, the date 

the data was published and last updated, the date we last accessed the data, and how frequently the data was updated. 

The acquired geospatial datasets included several geospatial data file formats, such as GeoJSONs (.geojson), 

shapefiles (.shp), geodatabases (.gdb), delimited files (.csv, .dsv, .xls, .xlsx, .txt), and MS Access (.mdb, .accd). 
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 110 
Figure 1. Examples of major oil and gas facility types as seen in high-resolution satellite imagery (Google basemap 

imagery, © Google Earth). (a). An oil well pad with one pump jack and storage tanks in the Permian Basin, U.S. (b). 

A cluster of oil pumpjacks in Kern River Oil Field in California, U.S. (c). A dry natural gas production well pad, with 

11 horizontally-drilled wells, in the Marcellus Shale play (northeastern Pennsylvania, U.S.). (d). A mixed oil and gas 

production well pad in the Bakken Shale play (North Dakota, U.S.), with eight horizontally-drilled wells. (e). A natural 115 

gas gathering compressor station in the Anadarko Basin (Oklahoma, U.S.). (f). A natural gas transmission compressor 

station in Pennsylvania (U.S.). (g). A natural gas transmission compressor station in West Siberian region (Russia). 

(h). A natural gas processing plant in Louisiana (U.S.). (i). An LNG regasification facility in La Spezia, Italy. (j). A 

crude oil refinery in Mesaieed, Qatar. 

 120 

For each country, we grouped all acquired geospatial datasets by their oil and gas facility categories (Table 

1), which formed the basis for each of the geospatial data layers in the consolidated database. These facility categories 

relate to the previously defined major oil and gas infrastructure types in upstream, midstream, and downstream 

operations. In addition, where data were available, we included spatial information on major equipment (e.g., 

dehydrators at natural gas compressor stations) and components (e.g., valves at natural gas processing facilities). We 125 

also included, as its own data layer, locations of natural gas flaring at facilities or clusters of facilities, based on VIIRS 

(Visible Infrared Imaging Radiometer Suite) detections and gas flare radiant heat and gas flared volume estimates 
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from the Earth Observation Group (Elvidge et al. (2015)). Finally, where available, we included geospatial data for 

oil and gas fields, shale plays, and sedimentary basins. 

We analyzed each acquired geospatial dataset, first by performing general data cleaning, such as identifying 130 

relevant data attributes (Table 2), replacing abbreviated attributes (e.g., for facility status) with full descriptions based 

on dataset metadata and/or documentation, and standardizing mixed data types. Further data pre-processing steps 

included standardizing data spatial references to an unprojected geographic coordinate reference system (datum: WGS 

1984, European Petroleum Survey Group code, EPSG: 4326), automated translation of non-English attributes, and 

standardization of date formats (OGIM format: “YYYY-MM-DD”) and numeric fields (3 significant figures for all 135 

numeric fields, except latitude and longitude attributes, which we standardized to 5 decimal places). In addition, where 

data were available, we transformed all production, capacity, and throughput quantities to standard units of bbl 

(barrels) and Mcf (1,000 cubic feet) for oil and natural gas products, respectively. Similarly, where necessary, we 

converted pipeline lengths and field/basin areas to common units of kilometers (km) and square kilometers (km2), 

respectively.  140 

In addition to the data cleaning and feature attribute standardization described above, additional data quality 

assurance and control that we applied before data integration included: (i) assigning standard missing data identifiers 

(“N/A” for categorical attributes, -999 for numerical attributes, and “1900-01-01” for date attributes), (ii) assessing 

and removing duplicate records, specifically for compressor stations and gas processing plants in the United States for 

which multiple datasets were acquired, where obvious duplication of facility locations (within 100 m) and attributes 145 

(common facility and operator names) were identified and (iii) verifying and correcting facility category definitions 

(e.g., ensuring that the category for oil and gas wells included only well locations as opposed to offshore rigs) and 

locational information (e.g., confirming point locations of facilities match the state/province or countries to which 

they are attributed). As part of the data pre-processing, for each major facility category in each country, state, or 

province, we automatically retrieved, visualized, and reviewed a subset of randomly sampled facility locations (n = 150 

20 to 50) in high-resolution satellite imagery, which provided an initial assessment of the accuracy of the facility 

category designation and spatial accuracy of point locations. 

For some countries with rich open datasets on oil and gas infrastructure, especially Canada, it was necessary 

to merge multiple datasets for the same facility category to enhance the attributes integrated in the OGIM database. 

For example, while we use surface hole locations for wells in the well location data for Alberta as integrated in OGIM 155 

database, we also incorporated information on well status, well name, operator name, and Universal Well Identifier 

(UWI) number found in a separate bottom-holes dataset from the Alberta Energy Regulator. When we merged multiple 

datasets from different sources to enhance the attributes for the same facility category in the same country, we identify 

these multiple data sources based on the source reference IDs as indicated in the data catalog.  

https://doi.org/10.5194/essd-2022-452
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



6 
 

 160 
Figure 2. Data acquisition, data processing, analytics, and quality assurance and control procedures for the OGIM 

database development. 

 

Finally, we also reviewed all unique descriptions of facility status information and included a standardized 

facility status attribute (“OGIM_STATUS”) in addition to the original facility status description, to facilitate grouping 165 

of infrastructure with the same level of activity. For example, original well status values of “active”, “gas producer”, 

“oil producer”, “producer”, “operating”, “pumping”, and “flowing” were all mapped to an “OGIM_STATUS” value 

of “producing”. 

As part of the data integration process, we developed and applied a standard data schema for each oil and gas 

facility category included in the OGIM database. These data schema codified the data types, the geometry types and 170 

coordinate reference systems, as well as the feature attributes included in the OGIM database for all acquired datasets 

(Table 1, Table 2). The included feature attributes allow for facility localization (region, country, state, latitude, 

longitude, etc), identification (unique well identifier, facility name, operator name, etc), and characterization (e.g., 

facility type, installation dates, facility status, production rate, pipeline length, etc; Table 2). For each unique facility 

category, we geospatially merged all the integrated datasets and exported the results into a GeoPackage layer. The 175 

final GeoPackage (the Oil and Gas Infrastructure Mapping database, OGIM_v1.gpkg) represents a consolidated 

database of all acquired and integrated open geospatial oil and gas infrastructure data across all regions. 

 

 

 180 
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Table 1. OGIM geospatial data layers. 

OGIM geospatial data layer   Additional information Geometry type 

Oil and natural gas wells Includes active, inactive, and plugged and abandoned oil 

and natural gas wells. 

POINT 

Natural gas compressor stations Facilities for natural gas compression in the gathering, 

transmission, and distribution sector. 

POINT 

Gathering and processing 

facilities 

Includes natural gas processing plants, natural gas 

dehydration and other treatment facilities, and oil gathering 

and processing facilities.  

POINT 

Tank battery Can be collocated with well sites; typical equipment 

includes oil and natural gas separation equipment and an 

arrangement of storage tanks. 

POINT 

Offshore platforms Oil and natural gas drilling, production, and processing 

platforms in offshore areas. 

POINT 

LNG facilities Includes both liquefaction and regasification facilities. POINT 

Crude oil refineries - POINT 

Petroleum terminals Includes tank farms and petroleum bulk storage tanks and 

terminals. 

POINT 

Injection, disposal, and 

underground storage facilities 

- POINT 

Stations - Other Includes metering and regulating stations and POL 

(petroleum, oil, and lubricants) pumping stations. 

POINT 

Equipment and components Includes point locations for dehydrators, separators, tanks, 

and valves. 

POINT 

Oil and natural gas production Includes reported well-level, facility-level, and field-level 

oil and natural gas production, as reported for 2021. 

POINT 

Natural gas flaring detections Based on VIIRS natural gas flaring detections in 2021. POINT 

Oil and natural gas pipelines - LINESTRING 

Oil and natural gas fields - POLYGON 

Oil and natural gas basins - POLYGON 

 

 185 
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Table 2. Examples of feature attributes for each layer in the OGIM database. 190 

Location attributes Facility identification Facility characteristics 

Region Unique well identifier Facility type 

Country Facility ID Facility operational status 

State/Province Data source reference ID Installation date 

On/Offshore OGIM ID Wells: spud date 

Latitude Facility name Wells: completion date 

Longitude Operator name Wells: drill type 

geometry   Wells: Annual Oil (BBL) and gas (MCF) production (as a 

separate data layer) 

    Pipelines: pipeline diameter (mm) 

    Pipelines: pipeline length (km) 

    Pipelines: pipe material 

    Pipelines: commodity 

    Compressor stations, processing plants, LNG, and refineries: 

reported capacity and throughput rates (BPD and MMcfd)  

    Fields and basins: area (km2) 

 

 

2.3. Oil and gas geospatial database analytics 

For each feature in the OGIM database, we assigned country names based on the UN Member States database 

(UN, 2022), with country boundaries based on a combination of ESRI World Country boundaries (ESRI, 2022) and 195 

the World Exclusive Economic Zones boundaries (EEZ, 2019). For each country, we used the annual country-level 

oil and gas production and consumption data based on international data from the U.S. Energy Information 

Administration (EIA, 2022) for 2019, the latest year for which complete oil and gas production statistics are available. 

From this data, we identify the major oil and gas producing countries that account for the top 80% of global oil and 

gas production (i.e., combined oil and gas production in energy units of barrels of oil equivalent per day (boed)). To 200 

analyze geospatial data on a regional basis, we group countries into seven regions based on the International Energy 

Agency’s energy regions of (i) Africa, (ii) Asia Pacific, (iii) Central and South America, (iv) Eurasia, (v) Europe, (vi) 

Middle East, and (vii) North America (IEA, 2022).  

We adapt the procedure by Rose et al. (2018) and develop geospatial data quality metrics, accounting for the 

reliability of the original data source, frequency of data updates, and richness of data attributes. In characterizing data 205 

source reliability, we considered the type of data source (i.e., government versus non-government data sources) and 

additional indicators such as ease of access of open data, and evidence of regular data updates and/or maintenance. 

We then assigned a score of 1—5 to each data source, with 5 representing highly reliable data source (updated 

frequently, available meta data and documentation, and data portals are well maintained) and 1 representing least 

reliable data source. We assessed the frequency of data updates based on the reported data update cadence for each 210 
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acquired dataset. We assigned a score of 1—5 to each data source, where (i) a score of 5 represents datasets that are 

updated on a daily to monthly cadence; (ii) a score of 4 represents data of quarterly to annual update frequency; (iii) 

a score of 3 represents data that is irregularly updated and was last updated in the past two to three years; (iv) a score 

of 2 represents data that is irregularly updated and was last updated within the last three to five years, and (v) a score 

of 1 represents data that was last updated more than five years ago. We also characterize the richness of feature 215 

attributes for each point feature in the OGIM database, focusing on oil and gas wells and major facility types in the 

midstream and downstream sector (i.e., natural gas compressor stations, gathering and processing facilities, LNG 

facilities, and crude oil refineries). For each feature for midstream facilities and crude oil refineries, we assessed 

whether the following six attributes were available: facility name, operator name, facility status, facility type, 

installation date, and capacity or throughput information. For each oil and gas well feature, we assessed whether the 220 

following six attributes were available: facility name, operator name, facility status, facility type, installation date (at 

least one of spud date or completion date), and drill type. If any of the attributes were available for each record, we 

assigned a score of 1 for that attribute for that feature, so that an attribute-rich feature will have a maximum score of 

6. Thus, the maximum total score for each feature, accounting for reliability of data source, frequency of data update, 

and richness of feature attributes, is 16. We use this maximum total score to compute a normalized aggregate data 225 

quality score (0 to 1) for each feature, as well as mean normalized aggregate data quality scores for each country and 

region. 

Understanding spatial accuracy of geospatial oil and gas data is important for accurate methane source 

attribution. However, it is not feasible to manually verify the accuracy of spatial information for the millions of point 

locations in the OGIM database. Nevertheless, and specifically for oil and gas wells, we identified a select number of 230 

countries and oil and gas producing basins in the U.S. (Bakken, Fayetteville, Permian, Marcellus, Denver-Julesburg), 

Mexico (Sureste), Argentina (Neuquén), Libya (Illizi-Ghadames), Saudi Arabia (Rub al Khali), Germany (northwest 

Germany), and Australia (Bowen-Surat) for an assessment of the spatial accuracy of point locations in the OGIM 

database. For each basin or country, we drew a random sample of 250 to 500 point locations, and automatically 

retrieved high-resolution satellite imagery (via the Google Earth satellite basemap, henceforth Google basemap 235 

imagery) at each location. On each retrieved image, we computed and plotted several buffers of different radii, 

representing distances of 10 m, 20 m, 50 m, 75 m, 100 m, and 150 m, around each selected point location (Figure 3). 

We then semi-automatically labelled each selected point location, indicating whether it was directly on a facility 

footprint as seen in satellite imagery, or offset within x m of an actual facility footprint in satellite imagery, where x 

is determined by the outline of the buffer radii around the target location (Figure 3). In total, we assessed the spatial 240 

accuracy of a random sample of 2,935 well locations in the selected basins mentioned above. In addition, we followed 

a similar procedure to evaluate the spatial accuracy of a random sample of natural gas compressor stations (n = 550 

for randomly selected locations in Canada, the U.S., Argentina, Mexico, Nigeria, and Russian Federation), processing 

facilities (n = 245 for randomly selected facilities in Argentina, Canada, Mexico, and the U.S.), and crude oil refineries 

(n = 301 for randomly selected facilities in Argentina, Australia, China, and the U.S.). 245 
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Figure 3. Schematic illustrating the semi-automated labelling of a random sample of oil and gas well locations in 

high-resolution Google basemap imagery (© Google Earth). The widgets are used to specify and automatically 

annotate the spatial accuracy of the randomly sampled facility location from the OGIM database (e.g., directly on 250 

facility footprint, within 10-m of the facility footprint, etc).  

 

 

 

 255 
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3. Results and discussion 260 

3.1 Global overview 

We acquired over 450 publicly available geospatial datasets of oil and gas infrastructure from 202 unique 

data sources. These datasets include all major oil and gas infrastructure types of interest (Table 1), although the total 

count and dataset availability for specific oil and gas infrastructure types exhibit wide variability among countries 

(Figure 4a). Among the major oil and gas producing countries representing the top 80% of global oil and gas 265 

production (EIA, 2022), publicly available government-sourced geospatial datasets accounted for two-thirds of the 

total, with countries in North America, South America (Brazil, Argentina), Norway, and Australia being notable for a 

large fraction of open-source government data in our consolidated database (Figure 4b). In contrast, nearly 80% of the 

acquired datasets for the bottom 20% of oil and gas producing countries came from non-government sources, reflecting 

a general paucity of reliable, open-source government-based oil and gas infrastructure datasets in these countries. 270 

We acquired a total of ~six million geospatial data records, which includes point-based facility locations, oil 

and gas production, oil and natural pipelines, and fields and sedimentary basins. The vast majority of these records 

(~2.5 million records) are for oil and gas well locations, and roughly 85% of the records were sourced from countries 

in North America (Figure 5a). LNG facilities (n = 338) and crude oil refineries (n = 712) have the smallest 

representation in the database, although both show broad coverage globally (Figure 5a). 275 
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Figure 4. Summary statistics for acquired datasets for countries in the OGIM_v1 database. (a). Total count of acquired 

records for each oil and gas infrastructure type (bar plots) in each of the major producing countries that account for 

the top 80% of global oil and gas production. The right y-axis shows the percent contribution of country-level oil and 

gas production to global oil and gas production totals, based on EIA data for 2019 (EIA, 2022). (b). Total number of 

datasets and breakdown by government and non-government sources for the major producing countries that account 280 

for the top 80% of global oil and gas production. For these countries, government sources accounted for two-thirds 

(68%) of the total acquired datasets. For the remaining countries accounting for the bottom 20% of global oil and gas 

production, government sources made up roughly one-quarter (23%) of the acquired datasets. 

 

 285 
 
Figure 5. Summary statistics for major oil and gas facility categories by regions in the OGIM_v1 database. (a). 

Regional distribution of the total count of features for each oil and gas infrastructure type. The map shows the seven 

regions corresponding to the regions in (a). (b). Bar chart showing the regional distribution of the total pipeline lengths 

in the OGIM database. 290 

 

In addition to point features, we acquired over 2.6 million km of oil and natural gas pipeline data globally, 

with a substantial proportion distributed in North and South American countries (Figure 5b). 

3.2. Global spatial distribution of major oil and gas infrastructure data 

The oil and natural gas wells data shows extensive coverage and significant overlap with major oil and natural 295 

gas basins for countries in North and South America, Europe (offshore regions), Australia, and New Zealand (Figure 

6a). However, there is sparse open-source data availability for oil and natural gas well locations in several countries 

in Africa, Middle East, Eurasia, and parts of Asia-Pacific regions (Figure 6a). In addition, we find the largest density 

of open-source geospatial data for the major midstream oil and gas infrastructure, namely, natural gas compressor 

stations and oil and natural gas gathering and processing facilities, in countries in North and South America and parts 300 

of Eurasia (Figure 6b).  
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The natural gas flaring detections layer adds important spatial information on global upstream, midstream, 

and downstream natural gas flaring, revealing flaring hotspots in major oil and gas producing countries, including 

those for which limited open-source data on oil and natural gas well locations are available (Figure 6c, Figure 6a). 

With reported detections at over 10,000 facilities or facility clusters globally in 2021 (Figure 5a, Figure 6c), the 305 

available data allows for further methane source attribution as well as regional-scale emission characterization, as has 

been demonstrated in recent studies (Zhang et al. (2020), Lyon et al. (2021), Shen et al. (2022)). However, because 

the spatial resolution of the VIIRS instrument is ~750 m x 750 m at nadir (Elvidge et al. (2015)), linking VIIRS 

detections to individual oil and gas facilities presents certain challenges, particularly in oil and gas producing regions 

with spatially dense oil and gas facilities, such as in the Permian Basin in southern New Mexico and western Texas 310 

(USA). Such facility attribution requires further studies. 

Globally, open-source data for oil and natural gas pipelines show broad coverage in North America, where 

spatial data for both gathering and transmission pipelines are available in several jurisdictions (Figure 6d). Outside of 

North America, the majority of acquired open-source data are for transmission oil and natural gas pipelines (Figure 

6d). 315 

We assessed the spatial density of all acquired oil and gas infrastructure datasets (excluding fields and basins), 

including natural gas flaring detections and oil and natural gas pipelines, at two spatial resolutions, namely, a regularly 

gridded, relatively granular spatial scale (25 km x 25 km, Figure 7a) and at the country scale (Figure 7b). On both 

spatial scales, we find the highest density of open-source geospatial records in North America, specifically the United 

States and Canada, with more than 2.5 million features (Figure 7b). In these countries, as well as in other countries 320 

with relatively high spatial density of open oil and gas infrastructure datasets (e.g., Mexico, Brazil, Argentina, Norway, 

Australia; Figure 7a, b), we can draw two broad conclusions: (i) most available datasets originate from authoritative 

government sources (Figure 4b), suggesting overall dataset reliability, and (ii) the highest density of oil and gas 

infrastructure locations are collocated with major oil and gas producing regions in these countries (e.g., Neuquén 

Basin in Argentina, Permian Basin in the United States, the North Sea; Figure 7a), suggesting broad open-source 325 

geospatial data coverage in support of comprehensive methane source attribution in such key oil and gas production 

basins.  

Among the countries that account for the top 80% of global oil and gas production, countries with the lowest 

spatial densities of open-source geospatial oil and gas infrastructure data include the Middle Eastern countries (e.g., 

Saudi Arabia, Iraq, Iran, Qatar, Kuwait, United Arab Emirates), Algeria, Russian Federation, China, and Kazakhstan 330 

(Figure 7a, b). We note that these are also countries for which we acquired limited or no open spatial data on oil and 

gas well locations (Figure 6a), suggesting that the low spatial densities quantified in Figure 7 indeed reflect locational 

data gaps in our database, and not that such oil and gas infrastructure are absent in these countries. Equally of note is 

the predominance of centralized national oil company (NOC) operations, where public oil and gas data reporting 

policies vary widely, and general oil and gas data transparency have been previously described as “deficient” (Heller 335 

and Mihalyi, 2019). We discuss further below a quantitative assessment of the data gaps on a country-by-country 

basis, focusing on the major oil and gas producing countries accounting for the top 80% of global production. 
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Figure 6. Spatial distribution of global oil and gas infrastructure locations in the OGIM_v1 database. (a). Spatial 

distribution of oil and natural gas wells, shown as blue points. The major oil and gas sedimentary basins accounting 340 

for the top 80% of global oil and gas production in 2019, are shown as red polygons. Countries for which there were 

limited or no public data acquired are shaded grey. (b). Spatial distribution of other major oil and natural gas 

infrastructure types, including natural gas compressor stations, gathering and processing facilities, petroleum 

terminals, offshore platforms, crude oil refineries, and LNG facilities. (c). Spatial distribution of natural gas flaring 

detections, based on VIIRS-derived datasets (EOG, 2022; Elvidge et al. 2015), highlighting global natural gas flaring 345 

hotspots based on estimated flared gas volumes. (d). Spatial distribution of acquired publicly available datasets for oil 

and natural gas pipelines. 

 

 

 350 
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3.3. Characterizing geospatial oil and gas data quality and spatial accuracy  

The acquired datasets, which originate from 202 unique data sources, are expected to exhibit various levels 355 

of data accuracy, richness of data attributes, and frequency of data updates. We developed data quality scores for each 

feature in our database, quantifying richness of data attributes (“attribute score”, range: 1-6), reliability of data source 

(“data source score”, range: 1-5), and frequency of data updates (“update frequency score”, range 1-5) to generate a 

normalized aggregate data quality score at the country level (range: 0-1; see Methods). We focus on country-scale 

aggregate data quality metrics for oil and natural gas wells and for midstream infrastructure, specifically, natural gas 360 

compressor stations and oil and natural gas gathering and processing facilities. We quantitatively assess data quality 

in each country for which open oil and gas data for these facilities are available in the OGIM_v1 database. 

Following a similar trend to the spatial data trends (Figure 7), we find the highest normalized aggregate data 

quality scores (>0.7) for countries in North America, South America (e.g., Brazil), Australia, and Europe (e.g., 

Norway; Figure 7). The defining characteristics of datasets in these countries that contribute to an overall high data 365 

quality score include: (i) data are sourced from transparent government sources, (ii) data is updated frequently (e.g., 

on a daily to monthly basis), and (iii) each feature include several key attributes such as facility name, activity status, 

facility operator, installation dates, and capacity or throughput information. In contrast, countries with low aggregate 

data quality scores < 0.5 (e.g., Russian Federation, Saudi Arabia, Iraq, Libya, Kazakhstan; Figure 8) are defined by a 

general paucity of open geospatial oil and gas data from official government sources (Figure 4b), which is further 370 

compounded by infrequent data updates and limited attributes in available datasets from non-government sources. 

Even so, we note that each feature in OGIM_v1 is identified by its facility type which, in addition to location 

information, represents the minimum attributional information necessary for methane source identification (Cusworth 

et al. (2021), Irakulis-Loitxate et al. (2021)).  

Given the importance of accurate locational information in facility-scale methane source attribution, we 375 

quantify the spatial accuracy of a subset of oil and gas facility locations in the OGIM database, based on semi-

automated inspection of a random sample of 2,935 active oil and gas well locations in 11 major oil and gas producing 

basins against high resolution Google basemap imagery (see Methods). We find that, on average, 85% of this random 

sample of well locations had locational information that were accurate to within 20 m of actual oil and gas well pad 

footprint as confirmed in high resolution satellite imagery (Figure 9), suggesting high spatial accuracy. Similarly, the 380 

percent of facilities that were located directly on the facility footprint or within 20 m of the actual facility footprint  

are 70%, 80%, and 83% for natural gas compressor stations, natural gas processing facilities, and crude oil refineries, 

respectively (Figure 9). The relatively low score for natural gas compressor stations is attributable to low location 

accuracy for facilities in western Canada, where facility locations are reported based on legal subdivision grids (e.g., 

the Dominion Land Survey grids, where each legal subdivision is ~400 m x 400 m). A small proportion of random 385 

samples (~2% to 5%) could not be quantified for spatial accuracy because no facility footprint was visible in satellite 

imagery, which may reflect the locations of recently constructed facilities assessed against an out-of-date satellite 

image. 
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 390 

  

Figure 7. Spatial trends in acquired open oil and gas infrastructure datasets in the OGIM_v1 database. (a). Spatial 

densities of oil and gas infrastructure data on a regular grid of 25 km x 25 km. The bar chart represents the legend for 

the heatmap and shows the total count of features within each grid cell, ranging from 1 to 28,500. The x axis and the 

numbers on top of each bar show the frequency of grids cells with such feature counts; for example, there are 711 grid 395 

cells (25 km x 25 km each) that have between 1,000 to 28,500 features each. (b). Spatial densities of open oil and gas 

infrastructure data at the country scale. The bar chart represents the legend for the heatmap and shows the total count 

of features, ranging from 1 to over 3 million. The x axis and the value to the right of each bar shows the frequency of 

countries with such feature counts; for example, only one country (the United States) has over 3 million features. The 

graduated circles with black edges show the total oil and gas production for the countries that account for the top 80% 400 

of global oil and gas production (n = 17; EIA, 2022). Countries with no data are shown in grey.  
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Figure 8. Characterizing geospatial oil and gas data quality and gap metrics. (a). The heatmap shows the normalized 

aggregate data quality scores at the country level, focusing on the top 80% oil and gas producing countries, and 

incorporating “attribute score”, “data source score,” and “update frequency score” (see Methods) for oil and gas wells 405 

and other major infrastructure types (i.e., natural gas compressor stations, oil and gas gathering and processing 

facilities, refineries, and LNG facilities). Spatial datasets of high data quality have high normalized aggregate data 

quality scores. (b). OGIM_v1 global data gap metric, focusing on the top 80% O&G producing countries. The gap 

metric aggregates the estimated data gaps for oil and gas wells, missing datasets for specific oil and gas infrastructure 

types, and gaps in data attributes, frequency of data updates, and reliability of data sources. Data-rich countries have 410 

very low scores less than 0.1, while data-limited countries have high data gap metrics greater than 0.5—0.7, on a scale 

of 0—1.  
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Figure 9. Characterizing spatial accuracy of oil and gas data. For each facility category, the box plots show the basin- 415 

or country-scale distribution of the % of labelled sites (random sample size shown in brackets in the top x axis) located 

directly on the facility footprint or offset within x m of actual facility footprint as seen in high-resolution satellite 

imagery. For example, for oil and gas wells, the first box plot indicates that among 11 basins, the median spatial 

accuracy is 76% for facility locations that were assessed to be located directly on facility footprint as seen in high-

resolution imagery. The colored circles show the total percentage of all facilities with combined spatial accuracy of 420 

<20 m, <50 m, and <100 m. For example, for all 2,935 locations of wells, 85% are located directly on, or within 20-

m of actual facility footprint as seen in high-resolution satellite imagery. A small fraction of facility locations (of 

roughly 2 to 5% of randomly sampled locations) were not visible in satellite imagery, likely because of outdated 

imagery (these are not shown in the figure). 

 425 

3.4. OGIM database gap assessment 

Given our focus on acquiring public-domain datasets on oil and gas infrastructure, we acknowledge we are 

limited by open-access availability of geospatial datasets in regions and countries of interest. In general, we find wide 

availability of open-access oil and gas infrastructure datasets reported by governments in North America, parts of 

South America (especially Argentina and Brazil), parts of Europe (e.g., United Kingdom, Norway), and Australia. We 430 

quantify data gaps in the top 80% of oil and gas producing countries by assessing: (i) the expected number of oil and 

gas producing wells (the largest oil and gas infrastructure category in terms of total number of facilities), (ii) 

accounting for missing datasets for specific infrastructure categories, as well as (iii) the aggregate data quality score, 
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which incorporates existing gaps in the databases based on factors such as frequency of data updates and richness of 

data attributes.  435 

We begin by analyzing basin-level oil and gas production data and assessing correlations with total number 

of producing wells and oil and gas productivity per well (barrels of oil equivalent per well) based on data for 52 basins 

in the Enverus Drillinginfo database (Enverus, 2021). We find a significant correlation between log-normalized oil 

and gas production (boe) and log-normalized well productivity (boe/well; R = 0.48, p <0.0001) and use this correlation 

to estimate the expected number of wells in each country in the top 80% of global oil and gas production based on 440 

EIA data (EIA, 2022). We assume data gaps exist if the estimated expected number of wells is more than the total 

feature count in the OGIM database. We then normalize the gap metric score from 0 to 1 such that a country with no 

publicly available data on wells gets a score of 0, while those countries with more well records than expected (as 

estimated above) get a score of 1.  

In addition, we develop a presence/absence metric for the following seven major oil and gas infrastructure 445 

categories, including wells, compressor stations, processing facilities, refineries, LNG facilities, oil and gas offshore 

platforms, and storage facilities. For each country, we normalize this score from 0 to 1, such that any country for 

which the relevant data for all seven facility categories were acquired gets the highest score of 1. Finally, we 

incorporate the normalized aggregate data quality score (as previously discussed) to assess the overall data gap metric 

for each country, which we compute as the average of the three scores above. 450 

Our gap assessment findings mirror the results of our aggregate data quality scores: we estimate few data 

gaps in oil and gas producing countries in North and South America compared to countries in North Africa, Middle 

East, Eurasia, and parts of Asia-Pacific where public-domain geospatial datasets on oil and gas infrastructure are of 

limited availability. Emerging approaches to fill in these data gaps involve the application of deep learning methods 

on high-resolution satellite imagery to automatically detect the locations of oil and gas infrastructure and classify by 455 

facility categories (Sheng et al. 2020). Further studies are needed to characterize the effectiveness of this approach for 

major oil and gas facilities, which are highly diverse in feature characteristics across global production regions. 

4. OGIM database analytics 

4.1. Tracking temporal changes in regional oil and gas activity   

A global, open-source, and regularly updated database of oil and gas infrastructure with detailed attributes is 460 

important for understanding temporal changes in regional oil and gas activity, which in turn supports measurement-

based characterization of regional methane emissions and emission trends. Where available, OGIM_v1 includes 

feature attributes such as spud and completion dates and oil and gas production for wells, which allows for tracking 

new well development and production trends (Figure 10a, b). For example, sustained growth in oil and gas production 

can be seen in the Marcellus (NE Pennsylvania, United States) and Neuquén Basin (Argentina), despite a general 465 

declining trend in the number of newly spudded wells between 2015 and 2021 (Figure 10a, b).  

Natural gas flaring in oil and gas production, gathering, and processing has emerged in recent years as a 

crucial waste management issue with significant greenhouse gas, air quality, public health, and environmental justice 

implications (Zhang et al. 2019, Zhizhin et al. 2021, Plant et al. 2022, Blundell and Kokoza, 2022, Cushing et al. 
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2020). The open-source availability of quantitative data on the frequency of detected gas flaring and estimated flared 470 

gas volumes at global oil and gas infrastructure locations based on VIIRS remote sensing observations (Elvidge et al. 

2015) and included in OGIM_v1 allows for the assessment of the temporal evolution of flaring activity in major 

production regions (Figure 6c) as well as progress toward global natural gas flaring reduction (World Bank, 2022; 

OGCI, 2021).  

 475 

4.2. Development of policy-relevant analytics and insights for methane emission assessment and mitigation   

 The availability of open geospatial oil and gas production data in OGIM_v1 supports the characterization of 

measurement-based area-, regional- or national-scale methane loss rates (Alvarez et al. 2018, Zhang et al. 2020, 

Zavala-Araiza et al. 2021, Schneising et al. 2020, Omara et al. 2022, Shen et al. 2022) relative to production. The 

assessment of measurement-based methane loss rate or intensity metrics is critically important for the evaluation of 480 

progress toward methane reduction targets such as the targets advanced by a consortium of major oil and gas 

companies (OGCI, 2021). For example, with a measurement-based methane loss rate of >3% of gross natural 

production (Zhang et al. 2020, Lyon et al. 2021, Chen et al. 2022, Shen et al. 2022), the Permian Basin in western 

Texas and southern New Mexico is one of the largest methane emitting oil and gas basins globally for which 

substantial methane reductions are needed if methane intensity targets of <0.25% are to be achieved (OGCI, 2021). 485 

While measurement-based facility-scale methane emission data or regional methane emission inventories are 

not included in the current version of the OGIM database, the available geospatial oil and gas infrastructure data can 

support the development of other policy-relevant analytics and insights that are crucial for targeted methane emission 

mitigation. The field- or basin-level characteristics regarding major oil and gas infrastructure (e.g., age of wells, 

distribution of well-level production, and type and density of other major oil and gas infrastructure), oil and gas 490 

production profiles (e.g., oil-dominant, gas-dominant, or mixed oil and gas) and operational practices (e.g., asset 

consolidation by National Oil Companies or voluntary methane emission reduction measures put in place by specific 

operators) have the potential to influence the magnitude of measured methane emissions. As an example, Shen et al. 

(2022) reports extremely high methane loss rates of 13% relative to gross natural gas production in the Sureste oil and 

gas production region of southern Mexico. The authors leverage detailed oil and gas activity data to postulate plausible 495 

mechanisms for high methane emissions observations, including (i) the potential venting of produced associated 

natural gas in a region with the largest density of newly drilled oil wells in Mexico, (ii) a concentration of central 

processing facilities previously identified with high potential for large methane emissions (Zavala-Araiza et al. 2021), 

and (iii) unique operational practices characterized by transportation and distribution of natural gas produced offshore 

to onshore oil and gas infrastructure and partial gas utilization with potential for large releases. Such analytical 500 

insights, derived in part based on detailed oil and gas activity data, can help inform policy actions toward effective 

methane mitigation.  
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Figure 10. Temporal evolution of oil and gas activity indicators in select regions based on available data in OGIM_v1: 

(a). Number of new wells spudded per year. (b). Total oil and gas production per year. (c). Natural gas flaring activity 505 

per year. The top chart (left y-axis) shows the VIIRS-derived number of flaring detections per year, while the bottom 

chart (right y-axis) shows the estimated annual gas flared volumes (based on Elvidge et al. 2015). The map shows the 

approximate locations of select regions plotted in a-c. 

 

To further illustrate this use case, we compare, in Figure 11, based on OGIM_v1 data, the distribution of well 510 

age (based on reported spud dates as of 12/31/2021), well-level oil and gas production, and operator production 

characteristics among three different oil and gas producing regions: (i) the New Mexico portion of the Permian Basin, 

(ii) the Sureste region in southern Mexico, and (iii) the Neuquén Basin in Argentina. Among these regions, the number 

of newly spudded wells per year (Figure 10a), well-level O&G productivity (Figure 11b), and the number of unique 

operators and their oil and gas production (Figure 11c) are greater in the New Mexico portion of the Permian Basin, 515 

even as the median age of active wells appear older than in the other two basins (Figure 11a). Furthermore, based on 

total oil and gas production, the largest operator accounts for 10%, 60% and 90% of regional oil and gas production 

in the NM Permian, Neuquén, and Sureste regions, respectively. These variabilities in regional density of oil and gas 

infrastructure, production, and operational characteristics suggest that variabilities in underlying drivers of methane 

emissions can be expected across various production regions, and that a tailored, rather than a one-size-fits-all strategy 520 

for methane emissions mitigation may be required across international regions.    
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Figure 11. Examples of analytical insights derived from OGIM_v1 database. (a). Violin plots showing the distribution 

of the age of active wells in the Sureste, Neuquén, and NM Permian (2021). The numbers at the bottom show the total 525 

number of active wells in each region. (b). Cumulative distribution functions of well-level productivity, showing low 

well-level productivity in the Sureste region (~90% of wells produce < 1 boed) and high well-level productivity in the 

NM Permian (~10% of wells produce > 100 boed). (c). Lorenz curves showing the distribution of regional oil and gas 

operators and their contribution to cumulative regional oil and gas production (e.g., the largest operator in the NM 

Permian accounts for 10% of regional production). 530 

 

4.3. Oil and gas methane point source attribution using airborne remote sensing 

In recent years, the growing constellation, and advancement in capabilities of, methane remote sensing 

satellites, have helped provide unprecedented insights into regional and point source methane emissions (Jacob et al. 

2022). For example, recent research have underscored the importance of a small fraction of “super-emitting” and 535 

“ultra-emitting” methane point sources as important contributors to global oil and gas methane emissions with 

significant potential for cost-effective methane abatement (Varon et al., 2019, Cusworth et al. 2021, Cusworth et al. 

2022, Irakulis-Loitxate et al. 2021, Lauvaux et al. 2022). Source attribution of these extreme methane point source 

emitters have largely relied on facility type identification in high-resolution satellite imagery, with limited detailed 

characterization of individual facility-scale sources. The available data attributes in the OGIM database—including 540 

facility names, activity status, operator information, completion or installation dates, and production or throughput 

data—support further source attribution analytics beyond facility type identification. Such source attribution analytics 

have the potential to provide further key insights into the characteristics of high-emitting point sources across oil and 

gas production regions. For example, by assessing the age of extreme methane emitters, Irakulis-Loitxate et al. (2022) 

reported the detection of more extreme emissions from newer facilities <2 years old in the Permian Basin and 545 

estimated that newer facilities contribute twice as much more methane than older facilities.  

In Figure 12 and Table 3, we show five examples of detailed methane source attribution for high-emitting 

point sources detected in the Permian Basin based on observations from an August 2021 deployment of MethaneAIR, 

an airborne precursor mission for MethaneSAT (Staebell et al. 2021), which is an upcoming satellite mission managed 
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by MethaneSAT LLC – a wholly owned subsidiary of Environmental Defense Fund. For each example of a high-550 

emitting  

 

 
 

Figure 12. Detailed methane source attribution of high-emitting point sources based on OGIM_v1 data as visualized 555 

in high resolution Google basemap imagery (© Google Earth). The high-resolution xCH4 data shown here are from 

an August 2021 deployment of MethaneAIR (an airborne precursor instrument for MethaneSAT), geo-rectified and 

regularly gridded on a 25 m x 25 m grid. Detailed source attribution for each plume is provided in Table 3. (a). Source 

identification of an oil well pad with four horizontally drilled oil wells. (b). Source identification of a 200 MMcfd 

natural gas processing plant. (c). Source identification of a methane high-emission event at a natural gas gathering 560 

pipeline segment. For this site, we also reviewed Sentinel-2 imagery at 10 meter spatial resolution (acquired in August 

2021) and found no other major oil and gas infrastructure was located or was actively being developed in the area 

close to the plume origin. We supplement OGIM_v1 data with operator-reported emission incident report to the New 

Mexico Oil Conservation Division (OCD, 2021), which identified a major natural gas release due to a rupture at a 

weld along the pipeline segment at this location. The operator estimated a total natural gas release of 9,620 Mcf over 565 

a duration of 18 hours. Based on this information, we estimate a methane vent rate of 8.2 metric tons per hour at the 

time of observation, assuming 80% methane content in gathered natural gas. (d). Source identification of an oil well 

pad with one horizontally-drilled well in the Permian Basin. (e). Source identification of methane emissions from a 

central gathering facility servicing three well pads with five wells. The gathering pipelines connecting the wellheads 

to the facility are shown in green. 570 
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Table 3. Methane source attribution of high-emitting point sources in the Permian Basin (as shown in Figure12). 

 

Methane 

emitting oil and 

gas facility   

(a) (b) (c) (d) (e) 

Facility type Oil well 

pad 

Natural gas 

processing plant 

Natural gas gathering 

pipeline 

Oil well pad Central gathering 

facility 

Facility name Haag Hz 

unit 

Mi Vida Gas 

Plant 

Lotus Lateral Poly 8' Nash Unit Rustler 

Operator name Earthstone Energy Transfer Lucid Energy XTO EOG 

Facility status Producing Operational Operational Producing Producing 

Other facility 

attributes: 

Age: 2 

years  

Installed 

capacity: 200 

MMcfd 

Reported emissions 

event: August 24, 

2021 

Facility age: 9 years # of wells: 5 

 
# of wells: 4 # of compressor 

units: 8 

Reported vented gas: 

9,620 Mcf over 18 

hours 

Gas production: 160 

Mcfd 

Drill type: Horizontal 

 
Drill type: 

horizontal 

Facility age: 7 

years 

 
Oil production: 22 

bpd 

Gas production: 

1,200 Mcfd 
 

Gas 

production: 

1,000 Mcfd 

  
# of wells: 1 Oil production: 660 

bpd 

 
Oil 

production: 

550 bpd 

  
Drill type: horizontal 

 

 
 575 

point source, we query and retrieve key attributes from the OGIM_v1 database (e.g., facility age, operator, production, 

and throughput capacity) that further improve our understanding of the methane emitting source. In addition to location 

information, facility ownership attribution is possible, where such data are available, potentially enabling rapid 

abatement of detected extreme methane emissions when near-real time intelligence on high emissions is transmitted 

to the known responsible operator. However, we note that several other factors can influence the ability for facility-580 

scale methane source attribution, including the spatial resolution of methane plume detection, the density of oil and 

gas infrastructure, and co-location or lack thereof, with other non-oil and gas methane emitting sources within 

individual remotely-sensed methane footprint. 
 

 585 
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5. Improvements to bottom-up oil and gas methane emission inventories 

Bottom-up oil and gas methane emission inventories are important for assessing regional and country-

specific trends in methane emissions and form the basis for regulatory measures designed to mitigate methane 

emissions from key sources in oil and gas operations (EPA, 2022; UNFCC, 2022). Typical methods for the 590 

development of these inventories involve the application of methane emission factors (e.g., methane emitted per unit 

of activity) to activity data (e.g., total number of producing wells; EPA, 2022). The accuracy and completeness of 

these inventories are dependent, in part, on the representativeness of the methane emission factors and the 

comprehensiveness of the oil and gas activity data. As methane remote sensing has advanced in recent years, an 

important need for accurate, spatially representative, and high-resolution bottom-up methane inventories has emerged, 595 

since these inventories can function as a priori information required for the Bayesian inversion modelling framework 

typically used for methane flux rate quantification (Jacob et al. 2016). 

The OGIM database supports improvements and updates to existing bottom-up methane emission inventory 

estimates by providing open-access spatially explicit data on facility locations and their attributes (activity data). We 

suggest that, where available, these detailed open access oil and gas infrastructure data and attributes can be integrated 600 

with empirical or modelled facility-scale methane emissions/emission distributions (based on measurements at 

representative sites) to update and improve current estimates of total oil and gas methane emissions, in addition to 

providing high-resolution gridded methane inventories needed for Bayesian inference of satellite observations. Below, 

we discuss the application of these principles to the development of gridded bottom-up oil and gas methane emissions 

inventory for the Permian Basin, which updates a previous inventory reported in Zhang et al. (2020) using similar 605 

methodologies described therein (and in the Supporting Information), but with updated activity data and site-level 

methane emissions characterization, modelling, and extrapolation to the full population of facilities in this region in 

2021.  

We begin by compiling oil and gas activity data in the Permian Basin, based on OGIM data, and 

supplementing, where needed, with proprietary data, particularly for well-level oil and gas production (Enverus, 610 

2021), which is currently not publicly reported for the state of Texas. To estimate site-level methane emissions for oil 

and gas production well sites, we estimate the total number of actively producing well sites following the geospatial 

clustering approaches outlined in Omara et al. (2022). Table 4 shows the summary of the activity data for the Permian 

region for 2021, while Figure 13 shows the spatial distribution of oil and gas infrastructure, production, and gas flaring 

in this region.   615 

We leverage existing site-level methane emission data and develop representative methane emission models 

to estimate total regional methane emissions, given the total population of operational oil and gas facilities in the 

region. Briefly, for oil and gas well sites, we use the site-level emissions data and the emission models developed by 

Omara et al. (2022) to estimate total methane emissions for low-producing well sites (n = 104,100), defined as well 

sites that produce less than 15 barrels of oil equivalent per day per site. For non-low production well sites (n = 27,171), 620 

we develop an emission factor of 3.6% (95% CI: 2.2—6.2%) methane loss rate relative to site-level methane 

production based on lognormal fit (𝐸𝐸𝐸𝐸 =  𝑒𝑒𝑒𝑒𝑒𝑒(µ +  0.5𝜎𝜎2), where µ = -1.76 (-1.9, -1.5) and σ=2.4 (2.3—2.6)) to 
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site-level methane loss rate measurements taken at 753 non-low production well sites and reported in previous studies 

(Caulton et al. (2019), Brantley et al. (2014), Robertson et al. (2017, 2020), Omara et al. (2016, 2018)). To be 

conservatively low, we report our estimate of well site emissions based on the lower bound of the modelled methane 625 

emission loss rate of 2.2%. For natural gas gathering and boosting compressor stations, we generate site-average 

methane loss rates of 0.25% of natural gas gathered based on an updated national estimate of gathering compressor 

station emissions by Zimmerle et al. (2020). For natural gas processing plants and transmission compressor stations, 

we use the emissions distributions and emission factors as modelled by Alvarez et al. (2018) based on facility-level 

methane emission measurements from Mitchell et al. (2015), Marchese et al. (2015) and Zimmerle et al. (2015). For 630 

gathering, transmission, and distribution pipelines, we use the EPA’s GHGI emission factors of 0.31, 0.74, and 0.5 

metric tons per year per mile, respectively (GHGI, 2021). For abandoned wells, we apply the measurement-based 

methane distributions for plugged and unplugged wells as modelled by Williams et al. (2021). We estimate methane 

emissions due to well completions and workovers based on the EPA Greenhouse Gas Reporting Program (GHGRP) 

data for the Permian region (GHGPR, 2022), accounting for hydraulically fractured and non-hydraulically fractured 635 

well completions and workovers. Finally, we follow the procedure in Elvidge et al. (2015) to estimate a total of 106 

bcf of gas flared in the Permian Basin in 2021, based on VIIRS detections. For each flaring detection at a facility or 

cluster of facilities, we assume an average methane content of 80% in flared gas and a methane combustion efficiency 

of 93% (Lyon et al. 2021). 

 640 

Table 4. Summary of activity data and facility-scale methane emissions data sources or models  

Oil and gas methane source 
or facility category 

Activity data 
(2021) 

Facility-scale methane emission data, models and emission 
factors 

Oil and gas production well 
sites 

131,271 well sites Methane emission models for low- and non-low producing 
well sites based on over 900 previous site-level measurement 
data (see Main Text)  

Gathering and boosting 
compressor stations  

837 stations; 
96,000 pipeline 

miles 

Zimmerle et al. (2020); EPA GHGI 

Gas processing facilities 163 facilities Mitchell et al. (2015), Marchese et al. (2015), Alvarez et al. 
(2018), EPA GHGI 

Flaring related emissions 1,560 detections  Elvidge et al. (2016); Lyon et al. (2021) 

Transmission and distribution 30 compressor 
stations; 44,480 

pipeline miles 

Zimmerle et al. (2015); Alvarez et al. (2018), EPA GHGI 

Abandoned wells 218,155 wells Williams et al. (2021); EPA GHGI 

Well completions and 
workovers 

4,797 wells EPA Greenhouse Gas Reporting Program (GHGRP) 
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 645 
 

Figure 13. Permian Basin oil and gas activity data (Permian Basin boundary shown in red). (a). Density of oil and 
gas wells (5 km x 5 km grids). (b). Density of oil and gas production (MMboe, 5 km x 5 km grids), (c). Locations of 
major oil and gas infrastructure. (d). VIIRS-derived gas flaring detections. Data sources: OGIM_v1, Enverus (2021). 

 650 

Our estimate for total Permian methane emissions is 3.1 Tg in 2021. Based on the total methane production 

of 100 Tg, and assuming 80% methane content in produced natural gas, we estimate the Permian methane emissions 

represent a methane loss rate of 3.1% in 2021. Our estimate of total oil and gas Permian methane emissions, leveraging 

measurement-based methane emissions data, is approximately a factor of 3x higher than estimates from the EPA’s 

gridded methane emission inventory (Zhang et al. 2020, Maasakkers et al. 2016, Shen et al. 2022), and ~16% higher 655 

than our previous estimate of ~2.7 Tg using 2018 activity data (Zhang et al. 2020), suggesting increasing methane 

emissions due to increasing oil and gas activity in the intervening years (e.g., new oil and gas development and natural 

gas flaring related emissions).  
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Figure 14. Bottom-up estimates of Permian Basin oil and gas methane emissions, based on measurement data. (a). 660 

Estimated total methane emissions for major oil and gas methane sources. The circle symbols (right y-axis) show the 

cumulative percentages of total methane emissions, indicating approximately 80% of estimated total methane 

emissions arise from oil and gas production well sites. (b). Cumulative percentages of total methane emissions as 

functions of modelled site-level methane emission rates for all facilities shown in a. (c). High-resolution (~1 km x 1 

km) spatial distribution of oil and gas methane emissions in the Permian Basin, based on facility-scale measurements. 665 

 

 

Our high-resolution bottom-up methane inventory provides a first order estimate of the predominant sources 

of basin-level oil and gas methane emissions, as well as detailed spatial distribution of emissions, which supports 

further methane source attribution at the regional or basin-level, beyond attribution to individual high emitting point 670 

sources. For example, our work suggests that oil and gas production facilities are the predominant methane sources in 

the Permian Basin, accounting for about 80% of total emissions (Figure 14). Our analysis shows clear methane 

hotspots concentrated in the Delaware (western half of the basin) and Midland (eastern half of the Permian, Figure 

14) sub-basins, that closely aligns with the density of infrastructure, flaring, and production (Figure 13b, c, d). 

Improved bottom-up methane inventories also allow for the assessment of the distribution of facility-scale methane 675 

emissions, revealing the relative contributions of both the high-emitting and low-emitting sources (Figure 14b). For 

example, in Figure 14b, we estimate that roughly 90% of the total methane emissions in the Permian Basin arise from 

sources that individually emit less than 100 kg/h/site, underscoring the importance of a large number of relatively low-

emitting facilities in this region accounting for the vast majority of total Permian Basin-wide methane emissions. 

 680 
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5. Data availability 

OGIM_v1 can be accessed at https://doi.org/10.5281/zenodo.7466758 (Omara et al. 2022) in an open-access 685 

GeoPackage file format. The updated bottom-up methane oil and gas methane emission inventory for the Permian 

Basin (for 2021) is available at https://doi.org/10.5281/zenodo.7466607 (Omara and Gautam, 2022) as a netcdf file.  

 

6. Code availability 

Python 3.7 code used for database integration and visualization is available upon reasonable request. 690 

 

7. Conclusions 

Advances in satellite methane remote sensing hold the promise of rapidly detecting and quantifying global 

oil and gas methane emissions across multiple spatial scales, from area-aggregate sources to facility-scale assessment. 

However, effective characterization of remotely sensed oil and gas methane emissions in support of mitigation of 695 

avoidable emissions requires a comprehensive global geolocated oil and gas infrastructure inventory with detailed 

facility attributes. Such a comprehensive, granular, and global-in-context infrastructure database is also needed for 

developing and updating bottom-up oil and gas methane emissions inventories which are used as a priori data for 

Bayesian inverse analysis of satellite observations for quantifying and attributing methane emissions. This work 

focuses on public-domain oil and gas datasets for all major facility categories that are significant methane emitters in 700 

order to develop a spatially explicit global database of oil and gas infrastructure. We acquired over six million features 

representing locational-based information for major oil and gas infrastructure categories, including oil and gas wells, 

natural gas compressor stations, gathering and processing facilities, LNG facilities, refineries, storage facilities, oil 

and gas production data, and transportation pipelines. We further present an updated framework to develop 

improvements to bottom-up emission inventories using our infrastructure database, with inputs from other multi-scale 705 

empirical data and modelling, to demonstrate a high-resolution emissions inventory for the entire Permian Basin which 

accounts for over 40% U.S. annual oil production. In addition, we show various examples of the applications of this 

database, including (i) tracking temporal changes in oil and gas activity in specific oil and gas producing basins, (ii) 

supporting the development of policy-relevant analytics and insights for effective methane mitigation, and (iii) 

enabling methane source attribution at the facility-scale and at regional scale. We finally provide an assessment of 710 

data gaps in the current version of the database, given our focus on acquisition and integration of public-domain 

datasets, which can be limited in certain oil and gas producing countries especially in Asia and Africa. Further efforts 

are needed to help fill in these data gaps, particularly the gaps in the locational information of major oil and gas 

facilities and gaps in the availability of relevant facility attributes. Such efforts could include the development of deep-

learning methods for automatically identifying and classifying oil and gas features in high-resolution satellite imagery. 715 

The OGIM database, which we anticipate updating on a regular cadence, (that is, at least once annually) as new 

datasets become available, fills a crucial oil and gas geospatial data need, in support of the assessment, attribution, 

and mitigation of global oil and gas methane emissions.  

 

 720 
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